Studies of 8-Quinolinethiol as Chelating Agents. III.¹⁾ Distribution Behavior of 8-Quinolinethiol between Chloroform and Aqueous Solutions

Eiichi Sekido,* Tadashi Kobayashi, and Yoshitaka Masuda

Department of Chemistry, Faculty of Science, Kobe University, Rokkodai, Nada-ku, Kobe 657 (Received September 4, 1981)

Synopsis. The distribution behavior of 8-quinolinethiol between chloroform and aqueous solutions was examined and compared with that of 8-quinolinol. The distribution coefficient was $K_{\rm DR} = 2140$ and macroscopic acid dissociation constants were p $K_{\rm a_1} = 2.05$ and p $K_{\rm a_1} = 8.39$.

8-Quinolinethiol is a useful organic reagent for the chloroform extraction and photometric determination of heavy metals.^{2,3)} Equilibrium constants for the extraction of the reagent itself are necessary to study the stoichiometric extraction of metals with 8-quinolinethiol. It is also interesting to compare the extraction behavior of 8-quinolinethiol with that of 8-quinolinol because it is assumed that 8-quinolinethiol exists predominantly as the zwitter ionic form in aqueous solutions,⁴⁾ but that almost all 8-quinolinol exists as the neutral form.

Experimental

Reagents. 8-Quinolinethiol was prepared by the method of Kealey and Freiser⁵⁾ and its sodium salt by the method of Nakamura and Sekido.⁶⁾ The sodium salt was purified by recrystallization three times from ethanol and dried in vacuo. 8-Quinolinol was also recrystallized three times from ethanol. The chloroform solution of 8-quinolinethiol was prepared as following. Into a 200 ml separatory funnel containing 10 ml of pH 4—5 buffer solution was added the required amount of sodium salt of 8-quinolinethiol under nitrogen gas, and then the resulting solution was shaken for 3 min with the aliquot of chloroform taken so as to obtain the required concentration of the reagent, 2×10^{-5} M (1 M=1 mol dm⁻³).

Apparatus. Extraction was made with a Taiyo M-100N type incubator. UV and visible absorption spectra were taken with a Hitachi 124 type double beam spectrophotometer. A Hitachi-Horiba pH meter M-5 with a glass-calomel electrode pair was used.

Procedures. Into a 50 ml cylindrical tube containing 10 ml of 2×10^{-5} M 8-quinolinethiol chloroform solution was added 10 ml of the aqueous solution, which was adjusted to the desired pH by a buffer solution and to 0.1 ionic strength by the addition of sodium perchlorate. After shaking at 25 °C until the equilibrium was attained, two phases were separated with a centrifuge for 2 min, then 5 ml of the aqueous phase was pipetted out and its pH was measured. Concentrations of the reagent in the chloroform phase and/or the aqueous phase were spectrophotometrically obtained and distribution ratios were calculated.

Results and Discussion

8-Quinolinethiol exists as both the neutral form, HR, and the zwitter ionic form, H^+R^- , in a solution. Therefore, acid dissociation phenomena of 8-quinolinethiol are represented by the following explanatory Scheme 1. The relationships between the various equilibrium constants in Scheme 1 and macroscopic acid dissociation constants, called K_{a_1} and K_{a_2} , are as follows:

$$K_{\mathbf{a}_1} = K_{\mathbf{a}_A} + K_{\mathbf{a}_B} \,, \tag{1}$$

$$\frac{1}{K_{a_2}} = \frac{1}{K_{a_C}} + \frac{1}{K_{a_D}},\tag{2}$$

$$K_{\rm t} = \frac{[\text{Zwitter ion}]}{[\text{Neutral}]} = \frac{[\text{H}^{+}\text{R}^{-}]}{[\text{HR}]} = \frac{K_{\rm a_{\rm A}}}{K_{\rm a_{\rm B}}} = \frac{K_{\rm a_{\rm D}}}{K_{\rm a_{\rm C}}}.$$
 (3)

As it is expected that the species existing in the organic phase is only HR, the distribution ratio of the reagent, $D_{\rm R}$, is represented by Eq. 4:

$$D_{\mathbf{R}} = \frac{[\mathbf{H}\mathbf{R}]_{o}}{[\mathbf{H}_{2}\mathbf{R}^{+}] + [\mathbf{H}\mathbf{R}] + [\mathbf{H}^{+}\mathbf{R}^{-}] + [\mathbf{R}^{-}]},$$
 (4)

where the subscript o represents the concentration in the organic phase. The simplifications of Eq. 4 on the lower pH (<2) and the higher pH (>8) media and the appropriate substitutions give Eqs. 5 and 6 respectively:

$$D_{R} = \frac{[HR]_{o}}{[H_{2}R^{+}] + [HR] + [H^{+}R^{-}]} = \frac{K_{a_{1}}K_{DR}}{(1 + K_{t})\{[H^{+}] + K_{a_{1}}\}'},$$
(5)

$$D_{\mathbf{R}} = \frac{[\mathbf{H}\mathbf{R}]_o}{[\mathbf{H}\mathbf{R}] + [\mathbf{H}^+\mathbf{R}^-] + [\mathbf{R}^-]} = \frac{[\mathbf{H}^+]K_{\mathbf{D}\mathbf{R}}}{(1 + K_t)\{[\mathbf{H}^+] + K_{\mathbf{a}_2}\}}, \quad (6)$$

where K_{D_R} is the distribution coefficient of the reagent, defined as $K_{D_R} = [HR]_o/[HR]$. Moreover, on the condition of $[H^+] \gg K_{a_1}$, and $[H^+] \ll K_{a_2}$ Eqs. 5 and 6 are simplified and expressed in logarithmic forms as Eqs. 7 and 8, respectively.

$$\log D_{R} = \log \frac{K_{DR}}{1 + K_{L}} - pK_{a_{1}} + pH$$
 (7)

$$\log D_{R} = \log \frac{K_{DR}}{1 + K_{t}} + pK_{a_{2}} - pH$$
 (8)

The plots of $\log D_{\rm R}$ for 8-quinolinethiol as a function of pH are shown in Fig. 1 with those for 8-quinolinol. A horizontal portion of maximum $\log D_{\rm R}$ for 8-quinolinethiol, $\log D_{\rm R_{max}} = 2.65$, appears in the range of pH 4 to 7, which indicates that the reagent exists completely as HR and H+R⁻. As $K_{\rm D_R}$ is related with $D_{\rm R_{max}}$ by Eq. 9, $K_{\rm D_R} = 2140$ is obtained by substituting the values $D_{\rm R_{max}} = 10^{2.65} = 447$ and $K_{\rm t} = 3.8^{3}$ in Eq. 9. A linear

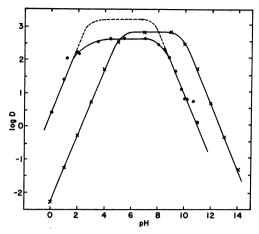


Fig. 1. Effects of pH on distribution of 8-quinolinethiol and 8-quinolinol between chloroform and aqueous solutio.

 $-\cdot$: 8-Quinolinethiol, $-\times$: 8-quinolinol, ---: i all 8-quinolinethiol were the neutral form.

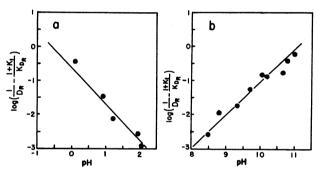


Fig. 2. Plots of log $\{(1/D_R)-(1+K_t)/K_{DR}\}$ vs. pH. (a) In acidic region and (b) in alkaline region.

$$K_{\rm DR} = D_{\rm Rmax}(1 + K_{\rm t}) \tag{9}$$

portion with the slope of +1 in the range of pH -0.5to 1.5 and that with the slope of -1 in the range of pH 8.5 to 11 are found as expected from Eqs. 7 and 8, respectively, and $pK_{a_1} = 2.05$ and $pK_{a_2} = 8.39$ were obtained from the pH values at $\log D_R = 0$. As was expected from the values of $pK_{a_1} = 5.13$ and $pK_{a_2} =$ 9.89 for 8-quinolinol, 6) 8-quinolinethiol is extracted into chloroform in the lower pH range than that which 8quinolinol is extracted. Although $K_{DR}(2140)$ for 8quinolinethiol is much larger than $K_{D_R}(772)$ for 8quinolinol, the horizontal portion of the maximum distribution ratio for 8-quinolinethiol is lower than that for 8-quinolinol, because about 78% of 8-quinolinethiol

Table 1. Equilibrium consstants for 8-quinolinethiol

	Present work	Previous work
K _t		3.84)
pK_{a_1}	2.05	2.0 ^{b)}
pK_{a_B}	2.15	2.10
pK_{a_A}	2.73	2.68
pK_{a_2}	8.39	8.36°)
$pK_{a_{c}}$	8.29	8.26 ^{e)}
pK_{a_D}	7.72	7.68°)

a) Ref. 3. b) Ref. 7. c) Ref. 8.

in aqueous solution exists as the zwitter ionic form, while almost all 8-quinolinol exists as the neutral form.4) If all of 8-quinolinethiol exists as the neutral form, the horizontal portion of the log D-pH curves will be higher than that for 8-quinolinol, as shown on the broken line in Fig. 1. Equations 10 and 11 are derived from Eqs. 5 and 6, respectively.

$$\log\left(\frac{1}{D_{R}} - \frac{1 + K_{t}}{K_{DR}}\right) = -pH - \log K_{DR} + pK_{a_{B}}$$
(10)
$$\log\left(\frac{1}{D_{R}} - \frac{1 + K_{t}}{K_{DR}}\right) = pH - \log K_{DR} - pK_{a_{D}}$$
(11)

$$\log\left(\frac{1}{D_{R}} - \frac{1 + K_{t}}{K_{DR}}\right) = pH - \log K_{DR} - pK_{a_{D}}$$
 (11)

The plots of $\log \{(1/D_R) - (1 + K_t)/K_{D_R}\}$ vs. pH are shown in Figs. 2a and 2b. Two straight lines with slopes of -1 and 1 are given and $pK_{a_B} = 2.73$ and $pK_{a_D} = 7.72$ are obtained from the values of $\log K_{D_R}$ and of the pH on $\log \{(1/D_R) - (1 + K_t)/K_{D_R}\} = 0$. Thus, the values of pK_{a_1} , pK_{a_2} , pK_{a_1} , and pK_{a_2} are calculated by using Eqs. 1, 2, and 3, and these values are tabulated in Table 1 with values obtained by potentiometric and photometric methods. As shown in Table 1, these values are in fair accord with those reported previously.7,8) Such agreement confirms that 8-quinolinethiol exists predominantly as the zwitter ionic form in aqueous solutions.

References

- 1) Part II: Y. Mido and E. Sekido, Bull. Chem. Soc. Jpn., **44**, 2130 (1971).
- 2) V. I. Kuznetsov, Yu. A. Bankovsky, and A. F. Iyevinsh. Zh. Anal. Khim., 13, 267 (1958).
- 3) Yu. A. Bankovsky, L. M. Chera, and A. F. Iyevinsh, Zh. Anal. Khim., 18, 668 (1963).
 - 4) S. F. Mason, J. Chem. Soc., 1957, 5010.
 - D. Kealey and H. Freiser, Talanta, 13, 1381 (1966).
 - A. Albert and A. Hampton, J. Chem. Soc., 1954, 505.
- 7) E. Sekido, Q. Fernando, and H. Freiser, Anal. Chem..
- 8) N. Nakamura and E. Sekido, Talanta, 17, 515 (1970).